1,672 research outputs found

    Against Quantum Noise

    Get PDF
    This is a brief description of how to protect quantum states from dissipation and decoherence that arise due to uncontrolled interactions with the environment. We discuss recoherence and stabilisation of quantum states based on two techniques known as "symmetrisation" and "quantum error correction". We illustrate our considerations with the most popular quantum-optical model of the system-environment interaction, commonly used to describe spontaneous emission, and show the benefits of quantum error correction in this case.Comment: 12 pages. Presented at the International Conference "Quantum Optics IV", Jaszowiec, Poland, June 17-24 1997. An introductory overview of quantum dissipation and error correction. Late submission to the archive due to requests and the limited availability of the journa

    Universality in Quantum Computation

    Get PDF
    We show that in quantum computation almost every gate that operates on two or more bits is a universal gate. We discuss various physical considerations bearing on the proper definition of universality for computational components such as logic gates.Comment: 11 pages, LaTe

    Quantum Algorithms: Entanglement Enhanced Information Processing

    Full text link
    We discuss the fundamental role of entanglement as the essential nonclassical feature providing the computational speed-up in the known quantum algorithms. We review the construction of the Fourier transform on an Abelian group and the principles underlying the fast Fourier transform algorithm. We describe the implementation of the FFT algorithm for the group of integers modulo 2^n in the quantum context, showing how the group-theoretic formalism leads to the standard quantum network and identifying the property of entanglement that gives rise to the exponential speedup (compared to the classical FFT). Finally we outline the use of the Fourier transform in extracting periodicities, which underlies its utility in the known quantum algorithms.Comment: 17 pages latex, no figures. To appear in Phil. Trans. Roy. Soc. (Lond.) 1998, Proceedings of Royal Society Discussion Meeting ``Quantum Computation: Theory and Experiment'', held in November 199

    A Universal Two--Bit Gate for Quantum Computation

    Get PDF
    We prove the existence of a class of two--input, two--output gates any one of which is universal for quantum computation. This is done by explicitly constructing the three--bit gate introduced by Deutsch [Proc.~R.~Soc.~London.~A {\bf 425}, 73 (1989)] as a network consisting of replicas of a single two--bit gate.Comment: 3 pages, RevTeX, two figures in a uuencoded fil

    From quantum circuits to adiabatic algorithms

    Full text link
    This paper explores several aspects of the adiabatic quantum computation model. We first show a way that directly maps any arbitrary circuit in the standard quantum computing model to an adiabatic algorithm of the same depth. Specifically, we look for a smooth time-dependent Hamiltonian whose unique ground state slowly changes from the initial state of the circuit to its final state. Since this construction requires in general an n-local Hamiltonian, we will study whether approximation is possible using previous results on ground state entanglement and perturbation theory. Finally we will point out how the adiabatic model can be relaxed in various ways to allow for 2-local partially adiabatic algorithms as well as 2-local holonomic quantum algorithms.Comment: Version accepted by and to appear in Phys. Rev.

    Mirror Inversion of Quantum States in Linear Registers

    Full text link
    Transfer of data in linear quantum registers can be significantly simplified with pre-engineered but not dynamically controlled inter-qubit couplings. We show how to implement a mirror inversion of the state of the register in each excitation subspace with respect to the centre of the register. Our construction is especially appealing as it requires no dynamical control over individual inter-qubit interactions. If, however, individual control of the interactions is available then the mirror inversion operation can be performed on any substring of qubits in the register. In this case a sequence of mirror inversions can generate any permutation of a quantum state of the involved qubits.Comment: 4 page

    Geometric phases induced in auxiliary qubits by many-body systems near its critical points

    Get PDF
    The geometric phase induced in an auxiliary qubit by a many-body system is calculated and discussed. Two kinds of coupling between the auxiliary qubit and the many-body system are considered, which lead to dephasing and dissipation in the qubit, respectively. As an example, we consider the XY spin-chain dephasingly couple to a qubit, the geometric phase induced in the qubit is presented and discussed. The results show that the geometric phase might be used to signal the critical points of the many-body system, and it tends to zero with the parameters of the many-body system going away from the critical points

    Stabilisation of Quantum Computations by Symmetrisation

    Get PDF
    We propose a method for the stabilisation of quantum computations (including quantum state storage). The method is based on the operation of projection into SYM\cal SYM, the symmetric subspace of the full state space of RR redundant copies of the computer. We describe an efficient algorithm and quantum network effecting SYM\cal SYM--projection and discuss the stabilising effect of the proposed method in the context of unitary errors generated by hardware imprecision, and nonunitary errors arising from external environmental interaction. Finally, limitations of the method are discussed.Comment: 20 pages LaTeX, 2 postscript figure

    On Quantum Algorithms

    Get PDF
    Quantum computers use the quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. In effect, they follow the same logical paradigm as (multi-particle) interferometers. We show how most known quantum algorithms, including quantum algorithms for factorising and counting, may be cast in this manner. Quantum searching is described as inducing a desired relative phase between two eigenvectors to yield constructive interference on the sought elements and destructive interference on the remaining terms.Comment: 15 pages, 8 figure

    Optimal State Discrimination Using Particle Statistics

    Full text link
    We present an application of particle statistics to the problem of optimal ambiguous discrimination of quantum states. The states to be discriminated are encoded in the internal degrees of freedom of identical particles, and we use the bunching and antibunching of the external degrees of freedom to discriminate between various internal states. We show that we can achieve the optimal single-shot discrimination probability using only the effects of particle statistics. We discuss interesting applications of our method to detecting entanglement and purifying mixed states. Our scheme can easily be implemented with the current technology
    corecore